Pleiotropic roles of the matricellular protein Sparc in tendon maturation and ageing
نویسندگان
چکیده
Acute and chronic tendinopathies remain clinically challenging and tendons are predisposed to degeneration or injury with age. Despite the high prevalence of tendon disease in the elderly, our current understanding of the mechanisms underlying the age-dependent deterioration of tendon function remains very limited. Here, we show that Secreted protein acidic and rich in cysteine (Sparc) expression significantly decreases in healthy-aged mouse Achilles tendons. Loss of Sparc results in tendon collagen fibrillogenesis defects and Sparc-/- tendons are less able to withstand force in comparison with their respective wild type counterparts. On the cellular level, Sparc-null and healthy-aged tendon-derived cells exhibited a more contracted phenotype and an altered actin cytoskeleton. Additionally, an elevated expression of the adipogenic marker genes PPARγ and Cebpα with a concomitant increase in lipid deposits in aged and Sparc-/- tendons was observed. In summary, we propose that Sparc levels in tendons are critical for proper collagen fibril maturation and its age-related decrease, together with a change in ECM properties favors lipid accretion in tendons.
منابع مشابه
Contrasting roles of SPARC-related granuloma in bacterial containment and in the induction of anti–Salmonella typhimurium immunity
The role of matricellular proteins in bacterial containment and in the induction of pathogen-specific adaptive immune responses is unknown. We studied the function of the matricellular protein secreted protein, acidic and rich in cysteine (SPARC/osteonectin) in the dissemination of locally injected Salmonella typhimurium and in the subsequent immune response. We show that SPARC was required for...
متن کاملSPARC Fusion Protein Induces Cellular Adhesive Signaling
Secreted protein, acidic and rich in cysteine (SPARC) has been described as a counteradhesive matricellular protein with a diversity of biological functions associated with morphogenesis, remodeling, cellular migration, and proliferation. We have produced mouse SPARC with a FLAG-tag at the N-terminus of SPARC (Flag-SPARC, FSP) in a Bac-to-Bac baculoviral expression system. After affinity purifi...
متن کاملStromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies
Neoplastic B-cell clones commonly arise within secondary lymphoid organs (SLO). However, during disease progression, lymphomatous cells may also colonize the bone marrow (BM), where they localize within specialized stromal niches, namely the osteoblastic and the vascular niche, according to their germinal center- or extra-follicular-derivation, respectively. We hypothesized the existence of com...
متن کاملAbsence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction
The matricellular protein SPARC (secreted protein, acidic and rich in cysteine, also known as osteonectin) mediates cell-matrix interactions during wound healing and regulates the production and/or assembly of the extracellular matrix (ECM). This study investigated whether SPARC functions in infarct healing and ECM maturation after myocardial infarction (MI). In comparison with wild-type (WT) m...
متن کاملMatricellular Proteins: A Sticky Affair with Cancers
The multistep process of metastasis is a major hallmark of cancer progression involving the cointeraction and coevolution of the tumor and its microenvironment. In the tumor microenvironment, tumor cells and the surrounding stromal cells aberrantly secrete matricellular proteins, which are a family of nonstructural proteins in the extracellular matrix (ECM) that exert regulatory roles via a var...
متن کامل